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INTRODUCTION

GPS Overview

The NAVSTAR GPS is a space-based, navigation satellite system that will provide
the user with precise three-dimensional position and velocity information as well as
coordinated GPS time continuously, regardless of location, altitude, weather or time of

day [1]. GPS is separated into three major segments: 1) the space segment, which is
comprised of the earth-orbiting satellite constellation, 2) the control segment, which
monitors the health and orbits of the satellites and 3) the user segment, which is
comprised of all of the air, land, sea and spaced-based users with GPS receivers.

 tar, td  mc, m

The space segment, the constellation of earth-orbiting satellites, will consist of 21
satellites plus three active spares, when fully operational in 1994. They will be
distributed uniformly in six subsyncronous circular orbital planes providing a minimum
of four visible satellites at any one time anywhere on earth. These orbital planes are
inclined 55" with respect to the equatorial plane and separated longitudinally by 60 ° . The
satellites orbit at an altitude of 10898 nm and with a period of 12 hours.

Signals from the satellites are transmitted continuously on two L-band frequencies
designated L1 and l-a, where L1 is 1575.42 MHz and l.ais 1227.60 MHz. The LI
frequency is modulated with both the coarse/acquisition (C/A) code and precision (P)

code, while the I-,2 frequency is modulated only by P code. The C/A code has a frequency
of 1.023 MHz and a wavelength of 300 m, with a period of one ms. The P code has a
frequency of 10.23 MHz and a wavelength of 30 m, with a period of one week. The

structure and composition of the P code signal is classified by the U.S. Department of
Defense. In addition, both the L1 and l-a frequencies are further modulated by a
navigation message which Contains GPS time, GPS almanac data, satellite ephemeris
data, satellite health, atmospheric propagation correction data as well as any other
information needed by the GPS receiver.

Control SegmenI

The control segment monitors, and corrects if required, the satellite broadcast signals
to ensure a pre-defined accuracy level. In addition, the control segment is responsible for
monitoring and controlling the orbits of the satellites, maintaining the GPS time and
uplinking necessary information to the satellites three times a day. The control segment,
when fully operational, will consist of a Master Control Station (MCS), located at Falcon
AFB, Colorado Springs, CO, five monitor stations, one located at the MCS and the other
four on the following islands; Hawaii, Kwajalein, Diego Garcia and Ascension and three

uplink antennas. The monitor stations allow simultaneous tracking of the complete
constellation and relay orbital information, GPS time and any other necessary
information to the MCS. The ranging information, acquired by the monitoring stations, is
then processed for use in satellite orbit determination and systematic error elimination.

The MCS then calculates corrections that are uplinked to the satellites via the three uplink
antennas.

The user segment is intended for both military and civilian users of the system. In
order to use GPS, a receiver is required. The GPS receiver consists of an antenna to



capturetheGPSsignals,anamplifier to boostthepowerlevel of thereceivedsignalsand
a digital computerto processtheinformationcontainedwithin thesignals.

The GPS receiver selectsand measuresa minimum of four independentsatellite
signals in order to calculate a three-dimensionalposition fix. In addition, three-
dimensionalvelocity andGPStimeis calculated.The GPSdesignspecificationsrequire
thecalculatedpositionto beaccurateto within 15m SphericalError Probable(SEP),the
calculatedvelocity to beaccurateto within 0.1 m/s (1a) and theGPStime to bewithin
100ns (lo) [2]. Sincethe GPS information is output in the World GeodeticSystem,
1984(WGS-84) Earth-Centered,Earth-Fixed (ECEF) coordinatesystem,military and
civilian positiondatacanbestandardizedona worldwidebasis.

Position Solution

The GPS receiver position f'ix is accomplished by means of passive tri-lateration.
Since the positions of the satellites are known at all times, the GPS receiver position is
determined by measuring the distance between the receiver and a minimum of four
satellites. The satellite atomic cesium clocks are kept synchronized to the GPS time by
the MCS. The less accurate clocks contained within the GPS receivers are not.

Therefore, the measurement of the signal's time of travel will be in error by an amount
equal to the difference between the atomic time standard maintained by the satellite and
the time maintained by the GPS receiver. This error produces an inaccurate range
measurement between the GPS receiver and each satellite it is receiving, known as
"pseudorange". In addition to the above time difference error, a satellite clock error as
well as ionospheric and tropospheric delays are present. However, the effect of the
satellite clock error is negligible for the typical navigation solution. In addition, this error
is indistinguishable from the ionospheric and tropospheric delays. Actual offsets of the
satellite clocks are approximated by polynomials in time and transmitted as part of the
satellite signal to the user for the correction of the measured pseudorange. The
ionospheric and tropospheric delays can be calculated on the basis of ionospheric and
tropospheric models. Therefore, for each pseudorange measurement, an equation can be
derived that relates the measurement to the satellite position and the unknown quantities
of GPS receiver position and GPS receiver clock error. Since four unknown quantities
exist, a minimum of four pseudorange measurements must be taken and solved
simultaneously to determine the three-dimensional GPS receiver position.
Mathematically, the pseudorange is defined as [3]:

p, = 3/(X - x,)2 + (y _ Y,)2 + (Z- z,)2 _ c(dT) (1)

where:

p, is the pseudorange measurement to satellite i

X,Y,Z is the GPS receiver position in the ECEF coordinate system

xi, y_, zi is the position of satellite i in the ECEF coordinate system
c is the speed of light (299,792,458 m/s)
dT is the GPS receiver clock error

The effect of the GPS receiver clock error and the way in which its measurement is used
to calculate the true position of the GPS receiver is shown in Figure 1.
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Figure 1
GPS Receiver Clock Error And Calculation Of True Position

This figure illustrates that the pseudorange radii do not converge at a single point but
instead enclose the shaded triangular area. However, if the range value equivalent to
c(dT) is added to (or subtracted from, if the case warrants) the pseudorange, then the radii
converge to a single point, the GPS receiver position. Figure 1 represents only a two-
dimensional case in which all three of the satellites and the GPS receiver lie in the same

plane. However, the same logic applies to the three-dimensional case with four satellites.

Geometric Eff¢,¢_

GPS receiver clock error is not the only contributor to the position error. The relative
geometry of the satellites being tracked and the GPS receiver also affects the position
accuracy. Therefore, in order to determine the accuracy available from the satellites
being tracked as a function of their geometry, the Dilution of Precision (DOP) values
must be calculated [1].

The DOP is composed of Position Dilution of Precision (PDOP), which reflects the
dilution of precision in three-dimensional position; Horizontal Dilution of Precision
(HOP), which reflects the dilution of precision in the two horizontal dimensions;

Vertical Dilution of Precision (VDOP), which reflects the dilution of precision in the
vertical dimension; and Time Dilution of Precision (TDOP), which reflects the dilution of
precision in time, i.e., in the estimate of the range error due to the GPS receiver clock
error. Geometric Dilution of Precision (GDOP) is a composite value composed of both
the position and time DOP. Since the magnitude of the range error due to the GPS
receiver clock error is multiplied by the DOP values to obtain the overall position
accuracy, small DOP values are desirable [1]. The most frequently used measure of
geometric performance is PDOP, which when multiplied by the range error due to the
GPS receiver clock error determines the position error. Figure 2 relates satellite geometry
to PDOP values.



Figure2
PDOPAs A FunctionOf SatelliteGeometry

DGPS Concept

DGPS represents a straight-forward method to significantly improve the accuracy of
GPS. The general principle of DGPS is that by having a GPS receiver at a pre-surveyed
location, the true values of the location are compared against the measured values, and
the resulting pseudorange and pseudorange-rate difference corrections are sent real-time,
to be applied to the airborne GPS receiver. This real-time uplink of the pseudorange and
pseudorange-rate difference corrections enables the airborne GPS receiver to calculate its
position relatively free of measurement errors due to ionospheric delay, tropospheric
delay, ephemeris uncertainties, satellite clock error and selective availability (SA),
intentional degradation of the C/A signal. SA is accomplished by the degradation of the
broadcast ephemeris data (GPS orbits and clock offsets) and by the systematic
destabilization of the GPS oscillator. The latter generates an irregularly changing error in
the pseudorange and pseudorange-rate values. All of these errors are either eliminated or
significantly reduced since they are common to both GPS receivers.

DGPS research at the NASA Ames Research Center was initiated in the early 1980's
when a C/A code, single channel sequencing DGPS system was developed and flight
tested on a NASA SH-3G helicopter [4-7]. The objective of the tests were to evaluate the
use of DGPS to support helicopter terminal approach operations. Final approach
positioning accuracy was 5.2 m (mean) +8.0 m (20) laterally and -7.7 m (mean) +7.0 m

(20) vertically. The use of barometric and radar altimeters to enhance the vertical axis

positioning accuracy yielded 5.0 m (mean) _+6.0 m (20) vertically and 5.0 m (mean) +4.0

m (20) vertically, respectively [5,7]. The time lags due to the satellite sequencing were
too great for real-time guidance and navigation. However, the positioning accuracy
attained during these tests demonstrated the potential of DGPS for terminal approach
operations.

Recent f'Lxed-wing DGPS terminal approach and landing t_ght tests conducted at the
NASA Ames Research Center yielded positioning accuracy of 0.1 m (mean) +1.8 m (20)

laterally and -0.8 m (mean) +6.6 m (20) vertically, using P code GPS receivers [8]. Thus,
a DGPS based guidance and navigation system has the potential to significantly enhance

the unique capabilities of the helicopter, as well as improving pilot situational awareness.
Specific helicopter missions that would benefit from such a system are:

1. Low altitude operations
2. Remote area landing



3. SearchandrescueOperations
4. Inter-city operations

The abovemissionscouldbecarriedout regardlessof weatherconditions,time of dayor
location

The use of C/A code DGPS in real-time to provide high accuracy, precision
navigation and guidancefor helicopter approachesto landing is the subject of this
research. The objective is to evaluate,throughflight test,C/A codeDGPS positioning
accuracyduringhelicopterapproachesto landing.
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TEST EQUIPMENT AND FACILITIES

Equipment Description

The operational layout of the facilities for the flight tests is shown in Figure 3, which
shows the various components involved. These include the NASA UH-60 helicopter
with the Ashtech GPS receiver operating onboard, the ground-based Ashtech GPS
receiver and antenna located at a pre-surveyed test location and the laser tracker used to
provide the true position and velocity of the aircraft during the flight tests.

AIRBORNE GPS
RECEIVER

LASER TRACKER

GROUND-BASED

Figure 3
Flight Test Facilities

Airborne System

The test aircraft is a modified UH-60 Black Hawk helicopter located at the NASA
Ames Research Center (See Figure 4). During the flight tests, two pilots are required to
fly the aircraft and operate the aircraft systems. In addition, a research engineer is
required to operate the airborne test equipment and to coordinate operations between the
airborne and ground-based systems. The airborne test equipment consists of a Ashtech
Model XII 12 channel C/A code GPS receiver, a MaxordAshtech SM 3010 VHF

telemetry uplink receiver, a Litton LN-93 ring laser gyro Inertial Navigation System
(INS) (used only for post-processing data collection), a 486 processor based Data
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Acquisition/Navigation Computer (DAC) and an interface to the aircraft's standard
approach guidance instruments (See Figure 5). In addition, a Tandy 102 laptop computer
is used to control both the data acquisition and navigation functions. The GPS antenna is
located at the rear of the aircraft on top of the vertical stabilizer, adjacent to the tail rotor.
The telemetry uplink antenna is located on the bottom of the aircraft approximately
midway between the main and tail landing gear. A laser reflector is mounted on both the
right and left sponsons for position tracking during the approaches to landing.

The DAC collects GPS position data at a rate of 2 Hz via a RS-232 connection and
INS Euler angle data at a rate of 64 Hz via a 1553B data bus. In addition, a precise GPS
time pulse is sent to the DAC at a rate of I Hz via a digital line. GPS time differs from
Universal Coordinated Time (UTC), by not adjusting for leap seconds at periodic end-of-
year intervals. Such adjustments in GPS time would disrupt the continuous availability
of the satellites for navigation purposes. This time pulse is used to time-tag the INS data
to that of the GPS time, via the IRIG-B time, which is derived from GPS time and
broadcast from the test site. The telemetry uplink receiver is connected to the GPS

receiver by a RS-232 connection and receives the pseudorange and pseudorange-rate
difference corrections at a rate of approximately 0.5 Hz. The computer-derived lateral
and vertical deviations axe output to the approach guidance instalments at a rate of 2 Hz

via a RS-232 connection. All airborne data collected from each approach is stored on a
removable 44 MB Syquest hard drive for post-flight analysis.

GPS
NNA

LASER _r _ _
REFLECTOR UPLINK

(ONE ON EACH SIDE) ANTENNA

Figure4

NASA UH-60 Helicopter

GPS
ANTENNA

_ ASHTECH I

SPS GPS

RECEIVER /

UPLINK i .... ,
ANTENNA

IHARD DISKI

DATA ACQUISITION
COMPUTER

Figure 5
Airborne System
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The DGPS based guidance is displayed in the cockpit (using standard Instrument
Landing System (ILS) type localizer and glideslope instruments) using a special interface
unit that converts computer-derived lateral and vertical deviations from a nominal
localizer and glideslope to simulated ILS localizer and glideslope signals, respectively
[9].

Ground-Based Reference System

The ground-based test equipment consists of an identical Ashtech Model XII GPS
receiver, a Maxon/Ashtech SM 3010 VHF telemetry uplink transmitter and a laser tracker
(See Figure 6). A research engineer monitors the ground-based test equipment and is in
two-way radio contact with the aircraft at all times. The telemetry uplink transmitter is
connected to the GPS receiver by a RS-232 connection and broadcasts the pseudorange
and pseudorange-rate difference corrections at a rate of approximately 0.5 Hz. The GPS
receiver antenna is permanently positioned at a pre-surveyed test location that allows for
unobstructive viewing of the satellites. The telemetry uplink antenna is positioned so as
to have line-of-sight with the aircraft throughout the flight test pattern. The laser tracking
data is time-tagged with the IR/G-B time prior to being recorded.

GPS UPLINK
ANTENNA ANTENNA

__1.] ASHTECH I , ,SPSGPS UPUNK I
RECEIVER I " ITRANSMITrER I

I LASER I ,,.=1 DATA I

TRACKING! _" [RECORDER]
DATA !

Figure 6
Ground-Based Reference System

Laser Tracking System

All flight tests were conducted at Crows Landing NAS, Crows Landing, CA, located
approximately 50 miles east of Moffett Field NAS. The NASA test facility at Crows
Landing NAS includes two Nike X-band monopulse radar trackers and one precision
NiYag laser tracker. The laser tracker provides precise aircraft range, azimuth and
elevation and is used to provide the reference or truth data by tracking the reflectors
mounted on the aircraft. Laser range accuracy is nominally !-0.3 m out to approximately
9 km; azimuth and elevation accuracy are nominally _+0.2 mrad. During the terminal part
of the approach this corresponds to position errors of less than 0.5 m in each axis. Note
that these accuracies are of the same order of magnitude as the expected DGPS position
accuracies. The laser tracker was calibrated each morning prior to a test flight. Refer to
Appendix A for a geographic description of the test facilities at Crows Landing NAS.
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DGPS BASED GUIDANCE SOLUTION

The airborne GPS receiver calculates its position (m) and velocity (m/s) in the ECEF
coordinate system at a rate of 2 Hz. In this reference frame, the origin is located at the
earth's center of mass, the XE axis is oriented through the equator at the Greenwich
meridian, the YE axis lies 90 ° to the east through the equator and the ZE axis is oriented
up through the North Pole. The navigation function of the DAC converts these positions
and velocities into the local Runway Coordinate System (RCS) reference frame to
provide guidance and for post-flight evaluation. In the RCS reference frame, the origin is
located at the aim point to the runway being flown to, the Xa axis is oriented parallel to
and down the runway, the YR axis lies 90" to the right and the ZR axis is oriented down,
normal to the runway. Refer to Appendix A for a full description of the RCS reference
frame at Crows Landing NAS.

The first step in the conversion is to transform the WGS-84 geodetic coordinates of
the aim point being flown to into the ECEF coordinate system. Since the earth rotates, it
assumes the shape of a sphere that is flattened at the poles and bulging at the equator.
Therefore, the earth can be modeled by an ellipsoid of revolution formed by rotating an
ellipse around its minor axis [10]. Figure 7 shows the ellipsoid of revolution and the
associated ECEF reference frame. As discussed above, the ECEF coordinates (XE,YE,ZE)
originate at the earth's center of mass; the XE axis is oriented through the equator at the
Greenwich meridian, the YE axis lies 90 ° to the east through the equator and the ZE axis is
oriented up through the North Pole, which coincides with the ellipsoid semi-minor axis.
The ellipsoidal normal through a point P intersects the Z_ axis, but does not pass through
the center of mass, due to the flattening of the ellipsoid. The length of the ellipsoidal
normal from the surface of the ellipsoid to the point P is called the geodetic height, h.
The angle between the ellipsoidal normal and the equatorial plane is the geodetic latitude,

tp. Any intersection of the ellipsoid of revolution with a plane containing the ZE axis is an

ellipse called the ellipsoidal meridian. The geodetic longitude, k, is the angle between
two meridional planes oriented clockwise from the XE axis. Therefore, the geodetic
coordinates (q_,J_,h) completely describe the position of a point on the earth.

NORTH
GREENWICH _ POIg

MERIDIAN _ / EQUATOR

YE

x_

Figure 7
Earth Ellipsoid Of Revolution

The relationship between the geodetic coordinates (tp,k,h) of the Crows Landing NAS
Runway 35 Aim Point (AP) and the ECEF coordinates (XE, YE,ZE) is as fOllOWS [10]:

9



APx,] [ (N+h)cosgcos;t ]APv, =1 (N+h)cosgsin;t /

APz_ L(N(1- e2) + h)sing_]

(2)

[Ax.]Av_ = Av_ - APv,

Az, Az, APz_

(3)

where:

AvE is the position of the airborne GPS receiver antenna in the ECEF reference

AzB

frame

APxE
APy E is the position of the Runway 35 Aim Point in the ECEF reference frame

/_zE

All airborne positions, and therefore all position differences with respect to the Runway
35 Aim Point, are based upon the position of the airborne GPS receiver antenna, which is
the origin of the navigation solution.

After the ECEF position difference is calculated, the airborne GPS receiver antenna
position in the ECEF reference frame is transformed into the RCS reference frame as
follows:

r,,x,.-I
Az, L%,]

(4)

where:
10

where:

a , the radius of the earth ellipsoid of revolution
N= ._1_ e2 sin2 ¢p

_2(a a b)_ (a-b) _e = a2 , the eccentricity of the earth ellipsoid of revolution

a is the semi-major axis of the earth ellipsoid of revolution (6378137.0 m)
b is the semi-minor axis of the earth ellipsoid of revolution (6356752.3141 m)

¢p is the geodetic latitude of the Runway 35 Aim Point (37.41335361" N)

_, is the geodetic longitude of the Runway 35 Aim Point (121.1082725 ° W)
h is the geodetic height of the Runway 35 Aim Point (12.4 m)

All of the numerical values above are valid only for the WGS-84 earth ellipsoid of
revolution.

Once the coordinates of the aim point in the ECEF reference frame are calculated, the
difference between the airborne GPS receiver antenna position and the aim point can be
determined as follows:



R V

C_ = [C,,][CE], the transformation matrix from the ECEF reference frame to the RCS
reference frame

--sin _pcosk -sin_0sink cos(p ]

C_ = -sink cosk 0 |, the transformation matrix from the ECEF

J-cosq_cosk -cos_psink -sin(p

reference frame to the Vehicle-Carried Vertical (VCV) reference frame, where the
origin is located at the Runway 35 Aim Point, the Xv axis is oriented towards
True North, the Yv axis is oriented towards True East and the Zv axis is oriented
down, normal to the runway

(p is the geodetic latitude of the Runway 35 Aim Point (37.41335361 ° N)

k is the geodetic longitude of the Runway 35 Aim Point (121.1082725 ° W)
h is the geodetic height of the Runway 35 Aim Point (12.4 m)

cosH sinH il
C_v = -sinH cosH , the transformation matrix from the VCV reference frame

0 0

to the RCS reference frame

H is the Runway 35 True Heading (10.099 °)
The GPS receiver velocity is transformed, by the DAC, from the ECEF reference frame
to the RCS reference frame in the same manner as the GPS receiver position, both
calculated at a rate of 2 Hz, the rate at which the GPS receiver calculates its position and
velocity.

With the GPS receiver position solution in the RCS reference frame, approach
guidance commands are calculated, based on the aircraft's angular deviation from the
nominal localizer and glideslope selected, and sent to the aircraft's approach guidance
instruments as simulated ILS localizer and glideslope guidance at a rate of 2 Hz.

The localizer error is calculated as follows:

LOC_, = tan -1 A_., (5)
DAxI t

If the aircraft is to the right of the runway centerline, a positive localizer error is

generated and a fly-left command is sent to the aircraft's standard approach guidance
instruments proportional to the amount off course. Correspondingly, if the aircraft is to

the left of the runway centerline, a negative localizer error is generated and a fly-right
command is sent to the aircraft's standard approach guidance instruments proportional to
the amount off course. Figure 8 illustrates the Iocalizer error geometry.

The glideslope error is calculated as follows:

GS_,_ = tan -1 -Az_ - GSs_,d

_/(Ax.)2 + (Ay,) 2

(6)

If the aircraft is above the selected glideslope, a positive glideslope error is generated and
a fly-down command is sent to the aircraft's standard approach guidance instruments
proportional to the amount off glideslope. Correspondingly, if the aircraft is below the

selected glideslope, a negative glideslope error is generated and a fly-up command is sent
to the aircraft's standard approach guidance instruments proportional to the amount off
glideslope. Figure 9 illustrates the glideslope error geometry.
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Figure 8
Localizer Error Geometry
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Figure 9
Glideslope Error Geometry
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"-" ERROR
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Previous flight tests involving helicopters flying steep approaches to landing
displayed the need to provide a lateral localizer course width (full-scale lateral deflection,
+_2 dots on the Course Deviation Indicator (CDI),) of_+_350 ft at the DH [11]. In addition,
the flight tests also indicated the need to provide vertical angular glideslope widths of
+1 °, +_2° and +3 ° for the 3°, 6° and 9 ° glideslopes, respectively. This corresponds to a
full-scale vertical deflection, +_.2dots on the CDI. These values were incorporated into

12



the DGPS-based guidance solution in order to give the non-standard approaches (6 ° and
9 ° glideslopes) the sensitivity of the standard approach (3 ° giideslope).

To achieve a _+_350 ft lateral localizer course width at the DH, an offset aim point
(OAP) for the localizer angular course width is utilized as the reference point for the

angular deviations from the nominal localizer selected (See Figure 10). Since selecting a
different glideslope changes the horizontal range (HR) between the DH and the aim point,
a pre-defined OAP for each of the three glideslopes is utilized, depending upon which
glideslope is selected for the approach.

OAP

)

Ix I

I 2.53 I 2"5*

I AP

I HF

I 35oft ssoft
DH

GS X (if) HR (if)

3° 7069.8975 954.0568

6° 7072,5184 951.4364

9° 7076.8921 947.0627

Figure 10
Localizer Geometry

To achieve the vertical angular glideslope widths of :t:1% _+_2° and :if3° for the 3 °, 6 °
and 9 ° glideslopes, respectively, the aim point is utilized as the reference point for the
angular deviations from the nominal glideslope selected (See Figure 11). Since selecting
a different glideslope changes the vertical angular glideslope width, a pre-defined
glideslope sensitivity (°/dot) for each of the three giideslopes is utilized, depending upon
which glideslope is selected for the approach.
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AP DH
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Figure 11
Glideslope Geometry

For all guidance and navigation calculations, a flat earth model was assumed,
therefore, neither Coriolis or centripetal accelerations were included. In addition, gravity
was assumed to be of a constant value. These assumptions are valid since the airspeeds
involved are relatively slow (80 Knots Indicated Air Speed (K/AS)), and the flight tests
are conducted at one location at relatively low altitudes (3000 ft Mean Sea Level (MSL)
and below).
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FLIGHT TEST PROCEDURES

Standard (3 °) and steep (6 ° and 9°) glideslope straight-in approaches were used to
evaluate helicopter approaches to landing. The 3° glideslope approach was flown at 110
KIAS while the 6° glideslope approach was flown at 85 KIAS and the 9 ° glideslope
approach was flown at 65 KIAS. These airspeeds were chosen to keep the aircraft's rate
of descent less than 1000 ft/min. Fourteen separate approaches for each of the three
glideslopes were flown for a total of 42 approaches. Throughout all of the approaches,
the aircraft was tracked via the laser tracker. All flights were scheduled so that a
minimum of five satellites were in view at all times and that the PDOP was less than a
value of six.

The overall flight path is a rectangular pattern consisting of four basic components;
the crosswind leg, the downwind leg, the base leg and the final approach (See Figure 12).
The climbing turn to crosswind is initiated upon reaching the departure end of the active
runway and is flown until reaching the downwind leg. The downwind leg is offset 1 nm
to the right of the active runway and is flown at the same altitude as the glideslope
intercept altitude. The turn to base is initiated at 5.1 rim, which is abeam the Initial
Approach Fix OAF), and is the point where the data collection begins. The base leg is
flown so that the aircraft is positioned at the IAF ready to begin the final approach. It is
the final approach segment that is of primary interest to this research.

All approaches were initiated at the IAF, located 5 nm out from the aim point along
the active runway heading, with the aircraft established on speed, on course, and at the
hard altitude associated with the glideslope to be intercepted (1100 ft MSL, 2100 ft MSL
and 3000 ft MSL for the 3 °, 6 ° and 9° glideslopes respectively). Upon crossing the IAF,
the aircraft is flown inbound to the Final Approach Fix (FAF), located 3 um out from the
aim point along the active runway heading. It is at the FAF that the aircraft intercepts the
appropriate glideslope and flys the approach down to the DH corresponding to the
glideslope just flown (190 ft MSL, 240 ft MSL and 290 ft MSL for the 3°, 65 and 9°
glideslopes respectively). After descending through the DH, a go-around is initiated at
which time the aircraft is flown back to the IAF to set up for another approach. A
graphical depiction of the final approach segment is illustrated in Figure 13.

5.1 DOWNWIND

NM _ 175 °

" ,,'t 1 _0°_X 355 ° _ o
'_ I

IAF FAF AP
5 NM 3 NM

FINAL APPROACH

Figure 12
Runway 35 Flight Test Path
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FLIGHT TEST RESULTS

Data Base Summary_

Approaches to be evaluated were chosen based upon the following criteria: 1)
continuous tracking of a minimum of four common satellites by both the airborne and
ground-based receivers, 2) good satellite geometry (PDOP less than six) and 3) valid laser
tracking data.

A time history statistical analysis of the position error during the approach was the
primary measure of the DGPS performance. Three-axis position errors for each approach
were calculated by taking the difference between the DGPS position (in the RCS
reference frame) with the laser tracking data (also in the RCS reference frame). In order
to calculate the position errors, the laser tracker truth data position at the laser reflector
was transformed to the GPS receiver antenna location as follows:

where:

i xlILxjr x1= L,.-[Cv'][c:][c:][c:]/,,,./
ALz, Lz, LAz, j

(7)

of inertia.

fi°C_ = cosq_

sin q_

cosO 0

C| = 0

-sine

v ICOStIJ

A,, = / 1.4224m/' the location of the right laser reflector with respect to the GPS
Az, L 3.2385m .]

receiver antenna (See Appendix A), in the aircraft body (AB) reference frame,
where the origin is located at the aircraft's center of gravity (CG), the XB axis is
oriented forward along the roll axis of inertia, the YB axis is oriented to the right
along the pitch axis of inertia and the Zs axis is oriented down along the yaw axis

o1-sin • , the transformation matrix about the roll axis of inertia

cos¢, J

sine 1

1 0 ],0 cosO

-sin_F !J
COStIj

0

the transformation matrix about the pitch axis of inertia

the transformation matrix about the yaw axis of inertia

F cosH sinH !1
CvR =|-sinH cosH ,the transformation matrix from the VCV reference frame

L o 0

to the RCS reference frame

H is the Runway 35 True Heading (10.099 °)
The GPS receiver antenna was used as the origin of the navigation solution and therefore,
all position errors are based off this location.
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Flight tests were conducted on 11 February 1993, 2 April 1993 and 12 April 1993.
SA was on during the flight tests. Seven 3 °, eight 6 ° and six 9 ° glideslope approaches
(out of a total of 42), which were flown on the three days with various satellite
combinations, were chosen for the statistical analysis. The approaches that were not
chosen for the statistical analysis had either airborne or laser tracker data that was

incorrectly time-tagged or had incomplete laser tracker data.

Laser Tracker Validation

To verify the post-processing algorithm which transforms the laser tracker truth data
to the RCS reference frame, processed data was compared to surveyed position data.
Static calibration data was collected prior to each flight by placing the aircraft laser
reflector over a known test point on the aircraft parking ramp (See Appendix A). Data
collected at the test point location was transformed into the RCS reference frame in real-
time and compared to the surveyed position. Any error greater than 0.5 m in any axis
would require that the laser be re-calibrated and verified prior to the flight test. Laser
calibration is verified prior to each flight test by taking measurements to several reflectors
permanently installed at surveyed locations around the location.

Laser Tracker Reference Results

Figures 14 and 16 show a sample 3 ° gIideslope approach illustrating both DGPS and
laser tracker lateral and vertical position with respect to the AP in the RCS reference
frame. Note the lateral position angular bias in Figure 14. This is most likely due to the
fact that the CDI was not calibrated accurately enough to the computer-derived lateral
guidance commands. This angular bias of approximately -0.25 ° was apparent in all of the
approaches evaluated. The lateral and vertical position errors for the same sample
approach are shown in Figures 15 and 17. The lateral position error jump at 2500 m is
due to laser tracking ambiguities between the right and left laser reflectors (See Figure
15).

Composite lateral and vertical position errors are shown for all of the 3 ° , 6 ° and 9 °
glideslope approaches in Figures 18 through 23. Note that the lateral position error is
consistently smaller than the vertical position error, as would be expected. The lateral
position error bounds show a slight trend towards increased accuracy as the range
decreases. Since the DGPS position accuracy is not a function of the aircraft position
during the approach, a possible explanation would be that the laser tracker is more
accurate at the shorter ranges. Figures 19, 21 and 23 display large vertical position error
bounds at the beginning of the approaches. Again this is most likely due to the
inaccuracy of the laser tracker at extended ranges.

Note the set of data points diverging away from the zero error line at approximately
2000 m in Figure 19. This divergence is due to the interruption of the pseudorange and
pseudorange-rate difference correction uplink to the aircraft on flight number 3092-308
and displays the effects of SA. These diverging data points correspond to an interruption
that lasted for 44 see and were not used in any position error statistical analysis. Since
the error due to SA is a function of time, the pseudorange and pseudorange-rate
difference corrections are time dependent. Therefore the age of the pseudorange and

pseudorange-rate difference corrections is critical to the accuracy of the DGPS-based
position solution. The data collected indicated that pseudorange and pseudorange-rate
difference corrections having an age greater than approximately 20 sec resulted in

significantly larger errors. All of the data collected was accomplished with pseudorange
and pseudorange-rate difference corrections having an age greater than five sec, with a
majority of the data collected having pseudorange and pseudorange-rate difference
corrections less than 10 sec in age.
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Figure 21 shows that the vertical position error bounds for the 6 ° glideslope
approaches converge and diverge at approximately 6500 m and again at approximately
3000 m. No correlation could be made between either the satellite geometry or age of the

pseudorange and pseudorange-rate difference corrections and the increase followed by
the decrease in positioning accuracy at these ranges.

Figure 23 shows that the vertical position error bounds for the 9 ° glideslope
approaches converge and diverge at approximately 2500 m. Again, no correlation could
be made between either the satellite geometry or age of the pseudorange and
pseudorange-rate difference corrections and the increase followed by the decrease in
positioning accuracy at this range.
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Sample 3 ° Glideslope Approach Lateral Position
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26



lo

"- 5

o

-5

-lO

-!0000 -8000 -6000 -4000 -2000 0

Range (m)

Figure 22
Composite 9 ° Glideslope Approach Lateral Position Error

27



IO

z .,'.t,:.,,,.....,......;. _... ,.. ".:'--.,r.,;-'_'-_:"".:,,.,."'.,.-_.':" _Y_"'_ ",:.__;.:_'...'_'_' ._'_;,_,,:.'_ I "" ,:. z, '* "" ¢"" _" " _" • " " r._...,... _,, • .. •. ",, .-':..*._:.:.'... -..,..._--""*',,,"....., . .._. • .'._. • _ • • ,,.
. _.,.,.,,.- ,...,., '_,;• . " ....n" : ,,;_.:. "s.;..--._.... ,,-,,-i _""" • "_ "=."'.';'_':., "" • ....

• . ." "",%,,,, .-...'.-_-'.'_.,._.._....;,;..! ,-.- _.:.. . .,-'.,.
%'q L -"

-10

-10000 -8000 -6000 -4000 -2000 0

Range (m)

Figure 23
Composite 9 ° Glideslope Approach Vertical Position Error

Time histories of the position errors were calculated at a rate of 2 Hz. A time history
analysis assumes that the DGPS positioning accuracy is not a function of the aircraft

position during the approach. Therefore, all of the data collected for each approach is
given equal weighting in the statistical analysis. The composite position error statistics
for each of the three types of approaches flown are summarized in Table 1.

Table 1

Composite Position Error Statistics For Each Type of Approach

Error

Orientation

Longitudinal

Lateral

Vertical

3 ° Approach Error (m)

Mean SD (20)

:12.74

+1.78

+3.54

-0.79

+0.22

-2.03

6 ° Approach Error (m)

Mean

-1.38

-0.14

-1.08

SD (2_)

_+_3.95

5:1.47

:E3.51

9 ° Approach Error (m)

Mean

-0.73

+0.18

-0.99

SD (2e;)

+_2.51

5:1.27

+_.2.81
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Since the longitudinal mean position error is biased in the opposite direction of
aircraft motion for all of the approaches and is significantly larger than the lateral mean

position error, it appears to be a result of computational time lags within the DGPS
receiver, which in turn increases the age of the pseudorange and pseudorange-rate
difference corrections. Such computational time lags were noticed at the ground-based
DGPS receiver during the uplinking of the pseudorange and pseudorange-rate difference
corrections to the aircraft. As the number of satellites that the ground-based DGPS

receiver tracked increased, the rate at which the pseudorange and pseudorange-rate
difference corrections were calculated and transmitted decreased. It should be noted that

longitudinal mean position error is not as critical as lateral and vertical mean position
errors during approaches to landing. The lateral mean position errors are relatively small,
as would be expected. The vertical mean position errors are significantly larger than the
lateral mean position errors and are primarily due to the uncertainty in the DGPS vertical

solution, and possibly due in part to a bias due to the age of the pseudorange and
pseudorange-rate difference corrections.

The lateral and vertical position errors show an increase in accuracy as the glideslope
increases (See Table 1). This is possibly due to the fact that the steeper the approach, the
slower the airspeed and therefore the greater the number of data points to analyze, with
the result being a more statistically accurate analysis.

The next analysis performed was a decision height analysis, where only data points
corresponding to the 200 ft DH on a standard 3 ° glideslope approach were used. This
type of analysis is typically used in evaluating the navigational accuracy of approach and
landing systems. The position errors at the 200 ft DH for six of the seven 3 ° glideslope
approaches flown (excluding flight number 3092-308 due to the interruption of the
pseudorange and pseudorange-rate difference corrections at the DH) are summarized in
Table 2, as well as Figures 24 and 25.

Table 2

Position Error Statistics At The 3 ° Approach 200 ft Decision Height

Error

Orientation

Longitudinal

Lateral

Vertical

200 ft DH Error (m)

Mean SD (26

:!:2.79

+1.49

+1.63

-0.61

+0.34

-2.25

The results indicate improvement in position accuracy at the 200 ft DH as compared
to the time history analysis results for the entire approach. Again this might be due to the
increased accuracy of the laser at shorter ranges. However, it should be noted that the

decision height analysis is based on a limited data set (six data points from six 3 °
approaches flown).
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CONCLUSIONS

Accuracy Considerations

DGPS positioning accuracy is composed of lateral and vertical error components.
The accuracy requirements for a precision approach can be expressed in terms of lateral

and vertical error limits. A comparison of DGPS accuracy with respect to the precision
approach requirements provides an indication of the feasibility of using DGPS to provide
high accuracy, precision navigation and guidance for helicopter precision approaches to
landing.

Precision Approach Requirements For A 3 ° Glideslooa

The point at which the 3 ° glideslope is 200 ft above the surface is defined by ICAO to
be the CAT 1 DH point [12]. The DH is defined by FAA Order 8260.3B (U.S. Standard
for Terminal Instrument Procedures) to be the height, specified in feet above MSL, above
the highest elevation in the touchdown zone at which a missed approach shall be initiated
ff the required visual reference has not been established.

The lateral requirement at the CAT 1 DH point is +17.1 m (2o) and the vertical

precision approach accuracy requirement is 4.2 m (2o) [12]. These accuracy
requirements are based on ICAO ILS standards for ground equipment and assume a 3 °
glideslope and 8000 ft distance between the localizer antenna and the runway threshold.

Comparative Assessment

DGPS positioning accuracy at the 200 ft DH on a standard 3 ° glideslope approach

was 0.3 m (mean) +1.5 m (26) laterally and -2.3 m (mean) +1.6 m (2o) vertically. These
errors indicate that the helicopter position based on DGPS guidance satisfies the ICAO

CAT 1 lateral and vertical navigational accuracy requirements (See Figures 24 and 25).
Note that these results are based upon a limited set of data (six data points from six
approaches). The relatively large vertical mean error is due primarily to the uncertainty
in the DGPS vertical solution. In addition, the vertical mean error may be due in part to a
bias due to the age of the pseudorange and pseudorange-rate difference corrections.

Concluding R¢mark_

The DGPS system utilized commercial receivers designed primarily for land
surveying applications and was compatible with the ILS type localizer and glideslope
instruments onboard the NASA UH-60 helicopter. Pilots commented that the DGPS-
based guidance appeared smooth, accurate and easy to follow.

The decision height analysis revealed that the DGPS system did achieve ICAO CAT
1 navigational accuracy requirements for a standard 3 ° glideslope approach. In addition,
14 of the 21 approaches analyzed using the time history analysis also displayed sufficient
navigational accuracy to meet such requirements. This is a significant result, since all
previous research, conducted with DGPS only, has not achieved such accuracy. One
reason for this is the rapid technological advancement made in both hardware and
software design currently available in DGPS receivers.

The age of the pseudorange and pseudorange-rate difference corrections has a

significant impact on the accuracy of the DGPS position solution. A bias due to the age
of the pseudorange and pseudorange-rate difference corrections may contribute to the
vertical position error, and to a lesser extent to the longitudinal and lateral position error.
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RECOMMENDATIONS

The age of the pseudorange and pseudorange-rate difference corrections needs to be

monitored and a warning needs to be displayed to the pilot when this age becomes greater
than 20 sec. The results of this research indicated that the positioning accuracy started to
deteriorate significantly after a 20 sec, or more, interruption of the pseudorange and
pseudorange-rate difference corrections.

The guidance and navigation algorithms can be modified to increase the positioning
accuracy. This is accomplished by integrating the DGPS and INS via Kalman filtering
techniques. This integration is the subject of current research at the NASA Ames
Research Center to improve helicopter precision guidance and navigation.

In order to take advantage of the improved positioning accuracy provided by the
DGPS/INS integration, which in turn may allow flying to a lower DH, a more

sophisticated cockpit display unit (CDU) is needed to provide localizer and glideslope
guidance as well as range to touchdown and overall DGPS status. Such a CDU would
need to provide the above information in a more accurate and timely manner, as
compared to the present instrumentation used, which would be required to fly to a lower
DH.
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APPENDIX A

Crows Landing NAS Survey Data

Previous research involving DGPS applications to fixed-winged aircraft required that
two points be surveyed at Crows Landing NAS in 1990 [8]. These points are survey
point AP, the aim point on Runway 35, and survey point LA on the East side of the ramp
area (See Figure 26). The two survey points, as well as additional survey data derived
from these two points were used in both the real-time as well as the post-processing
portion of the current helicopter DGPS research.

Survey point AP is located on the Runway 35 centerline approximately 3440 feet
short of the departure end of the runway. The station mark is a brass disk stamped "AP",
set into the concrete of the runway, protruding up approximately 5 mm. Survey point LA
is located approximately 6.9 meters West of the East edge of the concrete ramp (See
Figure 27). The station mark is the center of the head of a nail sunk into the junction of
two expansion joints of the concrete slabs forming the ramp. The expansion joints are
oriented 350.2 ° magnetic (based on the current magnetic variation of 15.3 ° East),
355.495 ° relative to the RCS reference frame and 5.594 ° True. Survey point L, from
which survey point LA is defined, is located 2.579 meters South and 4.712 meters East of
survey point LA (See Figure 27). The station mark is a brass disk stamped "L", set into
the concrete of the ramp, protruding up approximately 5 mm. The identification
stamping is partially defaced. In addition, all three of the survey points are marked by
fluorescent orange paint.

When required to verify the laser tracker accuracy as well as the accuracy of the
DGPS receiver or to align the INS at Crows Landing NAS, the pilot positions the aircraft
so that the Pilot-in-Command (right seat) is directly over survey point LA. This is
accomplished by having the pilot look over the control stick and off the right shoulder to
align the aircraft with the expansion strips (See Figure 27).
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Table 3

Component Aircraft Body Coordinates

LOCATION

Ground Static Line

LA

Right Reflector

INS

CG

GPS Antenna

STATION (in)

N/A

229.00

251.00

298.75

359.50

761.00

BUTILINE (in)

N/A

+24.00

+56.00

+32.00

0.00

0.00

WATERLINE (m)

184.00

184.00

206.50

212.50

258.75

334.00

The aircraft components in the RCS reference frame are obtained as follows:

ACx.][LA,,l [_,,c..-_c,.=/,_A,./+[c:]/,_e,.
ACz, [LAz, J LAACz,_

(8)

where:

"AACx,"

AAC_, is the difference, in the AB reference frame, of the aircraft components

_AACz_

with respect to survey point LA

I cosA sinA i]
c::-/-sinAoo..,A,t,,otr_,forma_or,matrixfromt,,e_ rofe,'en__ramoto

lo 0

the RCS reference frarne

A is the angular difference betwe.en the ramp orientation arid the RCS reference frame
(4.505 ° ) (See Figure 27)

LAy, - 220.0560m , the position of the point LA in the RCS reference frame

LAz, 0.7620m
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Table4
RCSCoordinates

LOCATION

AP

Laser

LA

Right Reflector(@ Pt.LA)
INS (@Pt. LA)

CG (@ Pt.LA)

GPSAntenna(@ Pt.LA)

XR(m)

0.0000

524.8016

2.5820

2.0348

0.7778

-0.8243

-10.9909

YR (m) ,

0.0000

352.4311

220.0560

220.9102

220.3977

219.7086

220.5097

ZR(In)

0.0000

0.4846

0.7620

0.1905

0.0381

-1.1366

-3.0480

Once the components are in the RCS reference frame, a transformation into the VCV
reference frame is required in order to apply the latitude and longitude correction factors.
This is accomplished as follows:

ACx,,l rAc,,,1
 c::J (9)

where:

AC y, [

ACz, J

is the aircraft components in the RCS reference frame

cosH -sinH !]
C_ = [sinH cosH , the transformation matrix from the RCS reference frame

Lo 0

to the VCV reference frame

H is the Runway 35 True Heading (10.099 °)
In the vicinity of survey point LA, the latitude correction factor is 111180.79872 m/deg
and the longitude correction factor is 88528.5504 rrddeg. Since the survey point AP can
be used as the origin of the VCV reference frame and the latitude and longitude are
precisely known, the component latitude and longitude are obtained as follows:

Latitude = APmr - ACx,/111180.79872 m/deg

Longitude = APLoN -ACyv/88528.5504 rn/deg

(10)

(11)

where:

AP_r is the geodetic latitude of the Runway 35 Aim Point (37.41335361 ° N)
APLoN is the geodetic longitude of the Runway 35 Aim Point (121.1082725 ° W)

40



Table5
GeodeticCoordinates

LOCATION LATITUDE (N) LONGITUDE (W) ELEVATION (m)

AP

Laser
BaseGPSAntenna

LA

INS (@ Pt.LA)
GPSAntenna(@ Pt.LA)

37° 24' 48.073"

37° 25' 02.830"
37" 25' 04.144"

37° 24' 46.904"

37 ° 24' 46.846"

37 ° 24' 46.471"

121 ° 06' 29.781"

121 ° 06' 11.930"

121 ° 06' 12.142"

121 ° 06' 20.953"

121 ° 06' 20.952"

121 ° 06' 21.031"

43.0

42.5

46.9

42.2

43.0

46.1

The latitude and longitude are given in the WGS-84 reference system while the
elevation is given in National Geodetic Vertical Datum of 1929 (NGVD 29) local
elevation reference system.
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APPENDIX B

MATLAB Code For Survey Calculations

%A, Angle between Xramp and Xr (rad)

A=2*pi*4.505/360;

%LAr, Coordinates of survey polnt LA in the RCS reference frame
(m)

LAr=[2.5280;220.0560;.7620];

%Crampr, Transformation matrix from the ramp reference frame to
the RCS %reference frame

Crampr-[cos(A) sin(A) O;-sin(A) cos(A) 0;0 0 I];

%GPSb, Position of the GP5 antenna with respect to survey point
LA in %the aircraft body reference frame (m)
GPSb=[-13.5128;-.6096;-3.81];

%CGb, Position of the CG with respect to survey point LA in the
%alrcraft body reference frame (m)
CGb-[-3.3147;-.6096;-1.89865];

%INSb, Position of the INS with respect to survey point LA in

the %aircraft body reference frame (m)
INSb-[-I.77165;.2032;-.7239];

%RRb, Position of the Right Reflector with respect to survey
point LA %in the alrcraft body reference frame (m)
RRb-[-.5588;.812B;-.5715];

%H, AnQle between True North and Xr (rad)
H-2*pi*10.099/360;

%Cry, Transformation matrix from the RCS reference frame to the
%vehicle-carried vertical reference frame

Cry-[cos(H) -sin(H) O;sin(H) cos(H) 0;0 0 I];

%APlat, Latitude of the Runway 35 Aim Point (deg)
APlat-37.4133536;

%APlon, Longltude of the Runway 35 Aim Point (dog)
APlon=121.1082725;

%dLAT, Latitude correctlon factor (m/dog)
dLAT-101.324*.3048*3600;

%dLON, Longitude correction factor (m/dog)
dLON-80.68*.3048*3600;

%GPSr, Position of the GPS antenna in the RCS reference frame
(m)

GPSr-LAr+Crampr*GPSb

GPSr "

-I0.990g

220.5097

-3.04B0

%CGr, Position of the CG in the RCS reference frame (m)

CGr-LAr+Crampr*CGb

CGr =
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-0.8243

219.7086

-1.1366

%IMSr, Position of the INS in the RCS reference frame (m)

INSr=LAr+Crampr*INSb

INSr =

0.7778

220.3977

0.0381

%RRr, Position of the Right
(m)

RRr=LAr+Crampr*RRb

Reflector in the RCS reference frame

RRr =

2.0348

220.9102

0.1905

%GPSv, Positlon of the GPS

vertical %reference frame (m)

GPSv=Crv*GPSr;
%CGv, Position of the CG in the

reference %frame (m)

CGv=Crv*CGr;

%INSv, Position of the INS in the
reference %frame (m)

INSv=Crv*INSP;

%RRv, Position of the Right Reflector
vertical %reference frame (m)

RRv=Crv*RRr;

%LAy, Position of the survey point LA
vertical %reference frame (m)

LRv=Crv*LRr;

%GPSIat, Latitude of the GPS antenna (deg)
GPSlat-APlat-(abs(GPSv(1,1)/dLAT))

antenna in the vehicle-carried

vehicle-carried vertical

vehicle-carried vertical

in the vehicle-carried

in the vehicle-carried

GPSIat =

37.41290849696332

%GPSIon, Longitude of the GPS antenna (deg)
GPSlon=APlon-(obs(GPSv(2,1)/dLOM))

GPSIon =

121.1058420311716

%CGlat, Latitude of the CG (deg)
CGlat=RPlat-(abe(CGv(l,1)/dLAT))
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CGlat -

37.41299978550254

%CGlon, Longitude of the CG (deg)
CGlon=APlon-(abs(CGv(2,1)/dLON))

CGlon -

121.1058308020561

%INSlat, Latitude of the INS (deg)
INSlat=APlat-(abs(INSv(l,1)IdLAT))

IN$1at -

37.41301288552292

%INSlon, Longitude of the INS (deg)
INSlon-APlon-(abs(INSv(2,1)/dLON))

IHSlon -

121.1058199655112

%RRlat, Latitude of the Right Reflector (deg)
RRlat-RPlat-(abs(RRv(1,1)/dLRT))

RRlat -

37.41302320790727

%RRlon, Longitude of the Right Reflector (deg)
RRlon-APlon-(abs(RRv(2,1)/dLON))

RRlon -

121.1058117769220
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APPENDIX C

MATLAB Code For Data Processing

% An M-file to process the raw DGPS flight test and laser truth
data

GS=input('Enter Glideslope: ');

APP=input('Enter Approach #: ');
load RD.dat

[r,c]=size(RD);

% H, Angle between True North and Xr (rad)

H=2*pi*10.099/360;

% Cvr, Transformation matrix from the VCV reference frame to the
RCS

% reference frame

Cur=[cos(H) sin(H) O;-sln(H) cos(H) 0;0 0 I];

% RLRb, Position of the right laser reflector wrt the GPS
antenna in the

% body reference frame (m)
RLRb=[12.9540;1.4224;3.2385];

% LLRb, Position of the left laser reflector wrt the GPS antenna
in the

% body reference frame (m)
LLRb=[12.9540;-I.4224;3.2385];
for i=l:r

% Y, Yaw angle (rad)
Y=RD(i,5);

% P, Pitch angle (rad)

P=RD(i,6);

% R, Roll angle (rad)
R=RD(i,7);

% Cy, Transformation matrix about the yaw axis
Cy=[cos(Y) -sin(Y) O;sin(Y) cos(Y) 0;0 0 I];

% Cp, Transformation matrix about the pitch axis
Cp=[cos(P) 0 sin(P);O I O;-sln(P) 0 cos(P)];
% Cr, Transformation matrix about the roll axis

Or=If 0 0;0 cos(R) -sin(R);O sln(R) cos(R)];
% L, Raw laser truth data

L=[RD(i,8);RD(i,9);RD(i,IO)];

% ALr, Laser truth data transformed to the GP$ antenna

position based

% upon the right laser reflector (m)
ALr=L-(Cvr*Cy*Cp*Cr*ALAb);

% ALl, Laser truth data transformed to the GP$ antenna
position based

% upon the left laser reflector (m)

ALI=L-(Cvr*Cy*Cp*Cr*LLRb);

% Routine to determine which laser reflector is being tracked
if(abs(RD(i,3)-ALr(2,1))<abs(RD(i,3)-ALl(2,1)))

AL=ALr;
else

At=ALl;
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end

% D,

O(i,1)-RO(i,1);
hour)

D(i,2)=RD(i,2);
D(i,3)=RD(i,3);

D(i,4)=RD(i,4);

O(i,5)-AL(1,1);
D(i,6)=AL(2,1);
D(i,7)=AL(3,1);
O(i,8)=O(i,2)-O(i,5);

D(i,9)=D(i,3)-D(i 6);

Processed DGPS flight test and laser truth data
% IRIG-B time (msec past the top of the

% GPS antenna X position (m)

% GPS antenna Y position (m)

% GP$ antenna Z position (m)

% Laser truth X position (m)

% Laser truth Y positlon (m)

% Laser truth Z position (m)
% X error (m)

% Y error (m)

O(i,lO)=D(i,4)-D( ,7);% Z error (m)
end

% MEAN, Mean value of the X,Y and Z errors

MEAN=mean(D(:,8:10))

% TWOSIG, Two sigma standard deviation of the X,Y and Z errors
TWOSIG-std(D(:,8:IO))*2.0

fprintf('app_errors , GLIOESLOPE - %1.0f\n',GS)

fprintf('app_errors , APPROACH • - %-2.0fkn',APP)
fprintf('app_errors , \nXerror-mean = %-10.5f\n',mean(D(:,8)))

fprintf('app_errors , Yerror-mean = %-10.5f\n',mean(D(:,9)))

fprintf('app_errors , Zerror-mean = %-10.5f\n\n',mean(D(:,lO)))

fprintf!'app_errors , Xerror-2sig = +/-%-
10.5f\n ,std(O(:,8))*2.0)

fprintf('app_errors','Yerror-2sig = +/-%-
10.5f\n',std(D(:,9))*2.0)

fprintf('app_errors','Zerror-2slg = +/-%-
10.5f\n\n',std(D(:,lO))*2.0)

fprintf(
fprintf(

fprint f(

fprintf(

fprintf(

fprintf(

fprintf(
fprlntf(

fprintf(

fprlntf(

fprintf(

fprintf(

fprintf(

fprintf(

fprintf(

'PD_',
'PD_',
'PD_',
'PD_',
'PD_',
'PD_',
PD_',
PO_',
PD_',
PO_',
PD_',
PO_',
PD_',
PD_',
PD_',

GLIDESLOPE - %l.Of\n',GS)
APPROACH • - %-2.0f\n',APP)
\nXerror-mean = %-10.Sf\n',mean(D(:,8)))

Yerror-mean = %-10.5fkn',mean(D(:,9)))

Zerror-mean = %-lO.5f\n\n',mean(D(:,lO)))

Xerror-2slg = +/-%-10.5fkn',std(D(:,8))*2.0)

Yerror-2slg = +/-%-10.5f\n',std(D(:,9))*2.0)

Zerror-2sig = +/-%-lO.5f\n\n',std(g(:,lO))*2.0)
IRIG-B')

Xgps')
Ygps')

Zgps')
Xttl')

Yttl')

Zttl\n')

for l=l:r

fprintf('PD_',

fprintf('PD_',
fprintf('PD_',

fprintf('PD_',

fprintf('PO_',

fprintf('PO_',

fprintf('PD_',
end

%fprintf('PD__error.dat'

%7.0f',D(i, 1))
%13.5f',D(i,2))
%ll.5f',D(i,3))
%11.5f',O(i,4))

%13.5f',D(i ,5))
%11.5f',D(i,6))

%11 .Sf\n' ,D( i,7))

' IRIG-8')
J
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%fprintf('PD__error.dat'_' RANGE')
%fprintf('PD__error.dat',' Xerror')

%fprintf('PD__error.dat',' Yerrar')

%fprintf('PDmerror.dat',' Zerrar\n')
for i=1:r

fprintf(°PDmerror.dat','%7.0f',D(i,1))

fprintf('PD__error.dat','%13.5f',D(i,5))

fprintf('PD_error.dat','%15.1Of',D(i,8))

fprintf('PD_error.dat','%15.1Of',D(i,9))

fprintf('PD_error.dat','%15.10f\n',D(i,10))
end

clear;
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APPENDIX D

MATLAB Code For Error Analysis

% An M-file to process the DGPS Error Files
GS=input('Enter Glideslope: ');

APP-input('Enter Total Number Of Approaches:
load error.dat

[r,c]-size(error);

% MEAN, Mean value of the X,Y and Z errors

MEAN=mean(error(:,3:5))

% TWOSIG, Two sigma standard deviation of the
TWOSIG=std(error(:,3:5))*2

fprintf('error_analysis','GLIDESLOPE - %1.0f\n',GS)

fprintf('error_analysis','APPROACHES - %-2.0f\n',APP)

fprintf('error_analysis','\nXerror-mean = %-

10.Sf\n',mean(error(:,3)))

fprintf('error_analysis','Yerror-mean = %-

10.5f\n',mean(error(:,4)))

fprintf('error_analysis','Zerror-mean - %-
10.Sf\n\n',mean(error(:,5)))

fprintf('error_analysis','Xerror-2sig - +/-
%10.5f\n',std(error(:,3))*2)

fprintf('error_analysis','Yerror-2sig = +/-%-
lO.Sf\n',etd(error(:,4))*2)

fprlntf('error_analysis','Zerror-2sig - +/-%-
10.Sf\n\n',std(error(:,5))*2)

clear;

');

X,Y and Z errors
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APPENDIX E

Individual Approach Time History Error Statistics

FLIGHT HUMBER: 3042-301

Xerror-mean - 0.29408

Yerror-mean - 0.11424

Zerror-mean - -1.90693

Xerror-2sig - +/-1.67565

Yerror-2sig - +/-1.51635

Zerror-2sig - +/-1.36613

FLIGHT NUMBER: 3042-302

Xerror-mean - -0.71309

Yerror-mean - 0.29140

Zerror-mean - -4.75735

Xerror-2sig - +/-2.76933

Yerror-2sig - +/-1.24985

Zerror-2sig - +/-3.42374

FLIGHT NUMBER: 3092-301

Xerror-mean - -2.24500

Yerror-mean - 0.31793

Zerror-mean - -1.36353

Xerror-2sig - +/-1.65130

Yerror-2sig - +/-1.61700

Zerror-2sig - +/-1.12435

FLIGHT NUMBER: 3092-302

Xerror-mean - -1.88567

Yerror-mean - 0.17116

Zerror-mean = -1.36367

Xerror-2sig - +/-2.49394

Yerror-2sig - +/-1.36208

Zerror-2sig - +/-2.95104

FLIGHT NUMBER: 3092-307

Xerror-mean - -0.23494

Yerror-mean - 0.19723

Zerror-mean - -0.96155

Xerror-2sig - +/-1.56515

Yerror-2sig - +/-1.53718

Zerror-2sig - +/-0.95922
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FLIGHT NUMBER: 3092-308

Xerror-mean - 0.32709

Yerror-mean - 0.18861

Zerror-mean - -0.57040

Xerror-2sig - +/-1.81597

Yerror-2sig - +/-1.25964

Zerror-2sig - +/-1.68482

FLIGHT NUMBER: 3092-314

Xerror-mean - -1.09040

Yerror-mean - 0.25571

Zerror-mean - -2.80339

Xerror-2sig - +/-1.71446

Yerror-2sig - +/-3.24581

Zerror-2sig - +/-2.24822
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FLIGHT NUMBER: 3042-601

Xerror-mean -

Yerror-mean -

Zerror-mean -

Xerror-2sig -

Yerror-2sig -

Zerror-2sig -

FLIGHT NUMBER:

Xerror-mean -

Yerror-mean -

Zerror-mean -

Xerror-2sig -

Yerror-2sig -

Zerror-2sig -

FLIGHT NUMBER:

Xerror-mean -

Yerror-mean m

Zerror-mean =

Xerror-2sig -

Yerror-2sig -

Zerror-2sig -

FLIGHT NUMBER:

-0.50098

-0.04846

-1.66626

+/-2.38453

+/-1.50241

+/-1.19721

3042-602

-1.25729

-0.02115

-1.91473

+/-1.95879

+/-0.74184

+/-1.48747

3092-603

-3.06731

-0.37484

0.16325

+/-1.81117

+/-1.49750

+/-2.53216

3092-604

Xerror-mean - -4.98386

Yerror-mean - -0.47458

Zerror-mean - 0.23296

Xerror-2sig - +/-1.83358

Yerror-2sig - +/-1.05925

Zerror-2sig - +/-1.34987

FLIGHT NUMBER: 3092-609

Xerror-mean - -0.90852

Yerror-mean - 0.19866

Zerror-mean - -1.49769

Xerror-2sig - +/-2.03222

Yerror-2sig - +/-1.86047

Zerror-2sig - +/-6.05498

FLIGHT NUMBER: 3092-610

Xerror-mean - -0.77933

Yerror-mean - 0.18996

Zerror-mean - -0.56043

Xerror-2sig - +/-1.15870

Yerror-2sig - +/-1.38347

Zerror-2sig - +/-1.74298
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FLIGHT NUMBER: 3092-615

Xerror-mean - 0.19538

Yerror-mean - -0.44835

Zerror-mean - -2.69098

Xerror-2slg - +/-1.42971

Yerror-2sig - +/-1.58679

Zerror-2sig - +/-2.49127

FLIGHT NUMBER: 3092-616

Xerror-mean - 0.56622

Yerror-mean - -0.20120

Zerror-mean - -0.72249

Xerror-2sig - +/-2.38544

Yerror-2sig - +/-0.85824

Zerror-2sig - +/-2.60039
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FLIGHT NUMBER: 3042-901

Xerror-mean - -0.69460

Yerror-mean - -0.01253

Zerror-mean - -1.68157

Xerror-2sig - +/-1.97014

Yerror-2sig - +/-1.03072

Zerror-2sig - +/-1.45544

FLIGHT NUMBER: 3042-902

Xerror-mean - -0.93279

Yerror-mean - 0.17897

Zerror-mean - -1.37699

Xerror-2sig - +/-1.52077

Yerror-2sig - +/-1.11278

Zerror-2sig - +/-1.99139

FLIGHT NUMBER: 3092-905

Xerror-mean - -1.83832

Yerror-mean - 0.36239

Zerror-mean - -1.02861

Xerror-2sig - +/-1.93866

Yerror-2sig - +/-1.04739

Zerror-2sig - +/-4.00243

FLIGHT NUMBER: 3092-906

Xerror-mean - -1.65273

Yerror-mean - 0.14191

Zerror-mean - -2.02475

Xerror-2sig - +/-1.45787

Yerror-2sig - +/-1.68595

Zerror-2sig - +/-2.33202

FLIGHT NUMBER: 3092-912

Xerror-mean - 0.39056

Yerror-mean - 0.24847

Zerror-mean - -0.18022

Xerror-2sig - +/-1.60088

Yerror-2sig - +/-1.15394

Zerror-2sig - +/-1.55909

FLIGHT NUMBER: 3092-917

Xerror-mean - 0.22296

Yerror-mean - 0.12506

Zerror-mean - 0.12790

Xerror-2sig - +/-2.23201

Yerror-2sig - +/-1.35992

Zerror-2sig - +/-1.51378
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